Subject PETE 570 Numerical Reservoir Simulation - 8 ECTS			
Program Graduate Term Fall 2025 Instructor Umid Shikhmammadov E-mail: umid.shixmammadov@khazar.org Phone: Classroom/hours Saturdays Office hours Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Term Fall 2025 Instructor Umid Shikhmammadov E-mail: umid.shixmammadov@khazar.org Phone: Classroom/hours Saturdays Office hours Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Instructor Umid Shikhmammadov E-mail: umid.shixmammadov@khazar.org Phone: Classroom/hours Saturdays Office hours Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
E-mail: umid.shixmammadov@khazar.org Phone: Classroom/hours Saturdays Office hours Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Phone: Classroom/hours Saturdays Office hours Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Classroom/hours Saturdays Office hours Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Prerequisites Reservoir Engineering, Calculus Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Language English Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Compulsory/Elective Compulsory Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
Required textbooks and course materials Core textbooks: Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
and course materials Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
and course materials Basic Applied Reservoir Simulation, T. Ertekin, J.H.Abou-Kassem, G.R.King, 2001			
G.R.King, 2001			
O '			
1105017011 Summinori, 1101101 Watt Illatiani, 2005			
Supplementary material:			
Class Lecture Handouts and Additional Reading Materials			
Cince 2000020 Transmouse with 11000200 Transmig 11000010020			
Course outline The course is designed for graduate students. Understanding of advance			
reservoir engineering concept is strongly required along with mathematic			
concepts including solution of ordinary and partially differential equation			
(ODE and PDE). Some coding skills is expected from students for projection			
implementation.			
Project is advised to be implemented using MATLAB but not limited to it (as			
other programming languages including C++, Java, Python, etc. are welcomed			
Final exam is substituted with the project with the goal to build own reservo			
simulator. Comparison to commercial simulators (eg. Eclipse 100) will			
utilized for validation purposes. New technologies in various types			
simulators will be examined and constructive summary provided. Homewo			
assignments will be a building block for the project implementation			
Fundamental concepts and their implementation using MATLAB will be tested			
Quizzes are aimed to test students on particular topics. Group discussion among			
students and following presentation is demonstration phase of the project. The students are different and following presentation are demonstration phase of the project.			
aim is to improve team work and presentation skills.			
Course objectives The objectives are to improve analytical thinking and develop numeric			
computational skills regarding reservoir simulation and build own reservoir			
simulator. Implementation includes analysis of advanced reservoir engineering			
concepts, investigation of ODEs and PDEs used in reservoir simulation, line			
algebra, numerical solution techniques. Although it is not a primary objective			
use of commercial softwares is crucial. Case studies will be investigated.			
Learning outcomes By the end of the course the students should be able:			
To apply reservoir engineering concepts for numerical simulation			
■ To manage input data			
■ To treat Parabolic and Hyperbolic equations			
■ To work with various types of discretization techniques in time and spac			

To implement Cartesian grids construction To solve tridiagonal matrix equations To analyze Simultaneous and Implicit Pressure Explicit Saturation solution methods and their convergence properties To analyze Sequential Solution Method To solve pentadiagonal matrix equations including LU method To treat wells as source or sink terms To couple reservoir-wellbore hydraulics models To code own simulator To work with commercial software (eg. Eclipse) To link disciplines and data management used in reservoir simulation To analyze state-of-the-art advances of the current field To demonstrate ability for construction of other complicated models Lecture X **Teaching methods** X **Group discussion Experiential exercise Simulation** X Case analysis X Course papers X **Others** Methods Date/deadlines Percentage (%) **Evaluation** Midterm Exam 30 **Case studies Class Participation** 5 20 **Assignment and** quizzes **Project** 40 Presentation/Group 5 Discussion **Final Exam Others** Total 100 **Policy Preparation for class** The structure of this course makes your individual study and preparation outside the class extremely important. The lecture material will focus on the major points introduced in the text. Reading the assigned chapters and having some familiarity with them before class will greatly assist your understanding of the lecture. After the lecture, you should study your notes and work relevant problems and cases from the end of the chapter

Withdrawal (pass/fail)

and sample exam questions.

A student is normally expected to achieve a mark of at least 65 % to pass. In case of failure, he/she will be required to repeat the course the following term or year.

Cheating/plagiarism

Cheating or other plagiarism during the Quizzes, Mid-term and Final Examinations will lead to paper cancellation. In this case, the student will automatically get zero (0), without any considerations.

Professional behavior guidelines

The students shall behave in the way to create favorable academic and professional environment during the class hours. Unauthorized discussions and unethical behavior are strictly prohibited.

Tentative Schedule				
Week	Date/Day	Topics	Textbook/Assignments	
	(tentative)			
1	20.09.25	Introduction	Ch. 1, HW	
2	27.09.25	Knowledge sharing of practical applications	Lecture Handouts	
3	04.10.25	Basic Concepts in Reservoir Engineering	Ch. 2, HW	
		Reservoir Simulation Model set-up	Ch. 3, HW	
4	11.10.25	Gridding in Reservoir Simulation	Ch. 4, HW	
5	18.10.25	Wells in Reservoir Simulation	Ch. 4, HW	
6	26.10.25	Single Phase Pressure equations	Ch. 5, HW	
7	01.11.25	Single Phase Pressure equations	Ch. 5, HW	
8		Midterm Exam		
9	15.11.25	Two Phase Flow equations	Ch. 5, HW	
10	22.11.05	Two Phase Flow equations	Ch. 5, HW	
11	29.11.25	Numerical Methods in Reservoir Simulation	Ch. 6, HW	
12	06.12.25	Data Management	Lecture Handouts	
13	13.12.25	Case Studies	Lecture Handouts	
14	20.12.25	Compositional Simulators	Lecture Handouts	
15	27.12.25	Thermal Simulators	Lecture Handouts	
	TBA	Project Submission		

This syllabus is a guide for the course and any modifications to it will be announced in advance.